We are India's No. 1 utility company according to Ministry of Power's 11th Annual Integrated Rating and Ranking for Power Distribution Utilities, a report prepared by McKinsey & Company.

1

24th National Award for Excellence in **Energy Management 2023**

2 X 250MW COMM. YEAR -**JAN/MAR 1995**

ADTPS – Last 20 years Performance

Description	
Plant Load Factor (PLF)	91.79 %
Availability	95.28 %
Specific Oil consumption	0.120 ml/kwh
Aux Consumption without FGD	7.857 %
Aux Consumption with FGD	9.176 %
Heat Rate	2284 Kcal/kwh

ADTPS achieved Plant load factor > 100% For 9 financial years

System Based Approach

ADTPS is the utility to implement 12 nos of ISO management standards.

Current year performance

Parameters	UOM	Data
Annual Generation	Mus	1129
PLF	%	77.16
Availability	%	96.36
Gross Heat Rate	Kcal/Kwh	2276
Auxiliary Power excluding FGD	%	9.063
Boiler Efficiencies (station wise)	%	87.00
Turbine Heat Rates (station wise)	Kcal/Kwh	1980
DM Water consumption	%	0.362

Energy Consumption Overview

Energy Consumption Overview

Unit-2 Overhaul deferred as per SLDC instruction due to Grid exigency

Benchmarking wrt Regulatory Norms

Benchmarking With Peer Companies for FY 22-23

Description	UoM	ADTPS - Dahanu	GWEL- Warora	Reliance-Rosa	Lanco- Amarkantak	GKE-Kamalanga	RPG-Dhariwal
Availability	%	95.82	89.4	91.55	98.56	93.34	93.22
PLF	%	79.88	82.17	71.5	61.56	76.88	80.47
Loading Factor	%	83.365	91.91	78.1	62.46	82.37	86.32
Aux. Power consumption	%	8.644	7.61	7.64	8.63	7.01	7.71
Sp. Oil consumption	mL/Kwh	0.08	0.08	0.06	0.13	0.08	0.09
DM Water Make-up	%	0.281	0.16	0.5	0.29	0.14	0.33
Heat Rate	Kcal/Kwh	2265	2306	2336	2463	2332	

Thermal Stations Ranking - YTD				
Rank	Station	State	Achieved Score	
1	ADTPS Dahanu	Maharashtra	88.00%	
2	APRL Kawai	Rajasthan	83.50%	
3	REGL Raigarh	Chhattisgarh	78.00%	
4	REL Raipur	Chhattisgarh	70.00%	
5	APML Tiroda	Maharashtra	68.00%	

Impact of Implementation of Energy Saving Projects

- Summary of investment & Energy Saving

Projects Proposed for Implementation

Description	Cost in Rs Crs
IP Turbine - New casing procurement & rotor refurbishment	27
HP Turbine – New casing procurement & seal refurbishment	3
Refurbishment of BFP system	2.00
Procurement of APH baskets	2.30
Refurbishment of flue gas duct	0.75
Renovation of lighting system	0.70
Energy efficient HT/LT motors	0.40
Energy efficient sump pumps for Conveyor tunnels	0.30
Replacement of LT VFDs	0.30
Total Cost	36.75

Expected Saving in Heat rate by 30-40 Kcal/Kwh and APC by 1000 KW

Energy Saving Projects

FY 2022-23		
Energy Saving Project	Savings /Year (Rs. Lacs)	Investments (Rs. Lacs)
Improvement in feed water temperature after attending parting plate leakage in HP heater -6	112	0
Reduction in ID Fan Loading after attending flue gas duct leakage	51	1
FY 2021-22		
Energy Saving Project	Savings /Year (Rs. Lacs)	Investments (Rs. Lacs)
Replacement of HP & IP Turbine - OH of LP Turbine	1657.00	1238.65
Reduction in slip loss of BFP 1B hydraulic coupling in U-1	101.00	0.63
De-staging -CEP 1B	3.54	9.0

Energy Saving Projects

FY 2020-21		
Energy Coving Dreiget	Savings /Year	Investments
Energy Saving Project	(Rs. Lacs)	(Rs. Lacs)
HP Heater Performance improvement by attending parting plate leakage	249	0.25
Replacement of BFP Cartridge in BFP 1A	160.60	58
Installation of Energy Efficient Lighting	15.70	30.33
FY 2019-20		
Enorgy Soving Project	Savings /Year	Investments
Energy Saving Project	Savings /Year (Rs. Lacs)	Investments (Rs. Lacs)
Energy Saving Project Replacement of IP turbine by new one and Overhauling of LP Turbine.	Savings /Year (Rs. Lacs) 1007	Investments (Rs. Lacs) 3212
Energy Saving Project Replacement of IP turbine by new one and Overhauling of LP Turbine. HP Heater Performance attending of parting plate leakage	Savings /Year (Rs. Lacs) 1007 75	Investments (Rs. Lacs) 3212 1
Energy Saving Project Replacement of IP turbine by new one and Overhauling of LP Turbine. HP Heater Performance attending of parting plate leakage Air Preheater – Seals are upgraded by double seal	Savings /Year (Rs. Lacs) 1007 75 265	Investments (Rs. Lacs) 3212 1 44
Energy Saving ProjectReplacement of IP turbine by new one and Overhauling of LP Turbine.HP Heater Performance attending of parting plate leakageAir Preheater – Seals are upgraded by double sealDe – staging of impeller Condensate Extraction Pump in Unit-2	Savings /Year (Rs. Lacs) 1007 75 265 1	Investments (Rs. Lacs) 3212 1 44 10
Energy Saving ProjectReplacement of IP turbine by new one and Overhauling of LP Turbine.HP Heater Performance attending of parting plate leakageAir Preheater – Seals are upgraded by double sealDe – staging of impeller Condensate Extraction Pump in Unit-2Installation of CEP VFD in Unit-1	Savings /Year (Rs. Lacs) 1007 75 265 1 33	Investments (Rs. Lacs) 3212 1 44 10 40

Opportunity Based Maintenance Practices Unit-2 – Attending HP Heater 6 parting plate leakage to improve Heat rate

Parameters	UOM	Data
Net Saving in Unit Heat rate	Kcal/Kwh	5.77
Net Saving/Year	Crs/Year	1.122
CO ₂ Reduction	MT	2290

DATE	AVG LOAD	HPH 6 Outlet Temperature
Before shutdown 07/07/2022	245.61	235.9
After shutdown 03/08/2022	245.2	243.3

Opportunity Based Maintenance Practices Unit -2- Reduction in ID Fan Loading after attending flue gas duct leakage

Parameters	UOM	Data
Net Saving/Year	MUs	1.47
Project Cost	Crs	0.013
Pay Back	Months	0.3
Saving Of coal	MT	341
Coal emission factor	kg CO2	1.269
CO2 Reduction in MT	tCO2	433

Parameters	UOM	Before Outage	After Outage	Reduction in loading
Improvement in ID fan 2A Current	Amps	181	168	13
Improvement in ID fan 2B Current	Amps	181	168	13

Project -1 Boiler Efficiency Enhancement during Flexible Operations

Parameters	UOM
Unburnt carbon loss	0.8
Dry Flue gas loss	5.8
Moisture in fuel	2.9
Moisture in burning H2	4.2
Moisture in ambient air	0.3
Loss Due to Radiation/Convection	0.4
Sensible Heat in Fly Ash	0.2
Sensible Heat in Bottom Ash	0.3
Sum	14.9

Boiler Dry Flue Gas Losses (%)

Project -1 Boiler Efficiency Enhancement during Flexible Operations

Trend Observations

- Avg 17°C deviation in furnace exit Flue gas temp observed leading to boiler efficiency loss of around 0.85 %.
- Precautions at lower loads are required to reduce the FEGT deviations and improve Boiler efficiency.

Unit Load	FEGT (Before Platen SH) (°C)			
(Mw)	Required	Actual		
147	751	784		
155	763	796		
165	776	803		
175	786	805		
185	801	820		
195	814	823		
205	827	832		
215	833	839		
225	838	847		
235	842	855		
245	849	865		

Project -1 Boiler Efficiency Enhancement during Flexible Operations

Root cause	Action Plan
Reactive strategy - Grinding Media charging	SOP/Guidelines prepared for charging the grinding media as per coal mill running
The strategy of mong media charging .	Hours based on past data.
No SOR for- Mill outlet temperatures wrt. coal	SOP/Guidelines prepared for mill outlet temp control based on various combinations
hlending ratios	of coal blending ratios (viz Washed+ imported, Raw and Washed Coal) based on past
	data
No SOP for coal mill Air Fuel ratio wrt. Load	Mill Operation Strategy is to be made based on Air Fuel Ratio control wrt unit Load.
Lack of awareness regarding uniform mill loading	Guidelines prepared to all the operation engineers to operate the mill with equal
Lack of awareness regarding uniform minitoading.	loading
No SOP for Excess air control wrt. Load.	SOP prepared for Excess air control wrt. Load.
No SOP for BT Positions wrt. Load.	SOP prepared for BT Positions wrt. Load.
No SADC Position feedback as secondary air control is	SADC position feedback arrangement made at local to ensure required position of
affected	SADCs.

Project -1

87.62

85.5

851

Savings

Boiler Efficiency (%)

Boiler Efficiency Enhancement during Flexible Operations

88.06

87.0

86.4

205

Boiler Efficiency-Before

195

Unit Load

88.03

Boiler Efficiency-Required

Boiler Efficiency-After

88.00

86.5

86.2

185

87.97

86.5

86.0

175

87.94

85.9

85.5

167

87.78

85.5

85.2

153

INDIA'S N�.

87.5

86.25

adani

87.5

86.56

Overall Average Boiler efficiency has increased from 86.25 % to 86.56%, due to combustion quality enhancement.

- Improve Boiler Efficiency by 0.31 % Rs 408 Lacs •
- Station APC by 0.1% Rs 113 Lacs •
- Improved ROE Rs 315 Lacs .

Total Financial Gain 836 Lakhs/Annum

88.21

Average

recurring..

245

Achieved benefits just by changing the operation philosophy without additional Investment.

88.24

87.2

87.1

236

245

88.12

87.0

86.8

224

88.09

86.9

86.6

215

Project -2 Reduction in down time of Coal Mill

Mill Explosion

Generation Loss ₹149.32 ₹76.5 ₹2.45 ₹2.45 2009 2010 2019 2020

Financial Impact

Project -2 Reduction in down time of Coal Mill

- Overall Average Boiler efficiency has increased from 86.25 % to 86.56%, due to combustion quality enhancement. As per recommendation of QI team explosion vents are installed at inlet primary air duct
- During mill explosion no damage observed in duct & other mill components & rupture disc worked which prevented major damage.
- Mill downtime reduced significantly as rupture disc replacement took @3-4 hrs

Explosion vent installed at our Tube Mill (BBD4772) -4 NOS per mill 2 sizes of rupture disc (400x400) and (500x500) installed at DE & NDE

Project -2 Reduction in down time of Coal Mill

Problem

Increase in demurrage time due to large size coal boulders of raw coal.

Problem statement

- As imported coal price shoot up, ADTPS forced to switchover to raw coal to maintain low generation cost.
- During unloading of raw coal, Coal Handling Plant (CHP) receives large size of coal boulders which cannot be passed through apron hopper grill (300x300 mm)
- Need to break boulders into small size. Time taken by breaking of coal boulders @ 10 to 15 hrs per rake therefore CHP department cannot unload all the rakes in stipulated time of 07 hours given by Indian railways which results in demurrage(penalty)@ 2.4 Rs Crs charges

Project -3 Reduction in Coal Demurrage cost by 25%

Poking of Raw coal

Apron Feeder Grill

Poking of Raw coal

Coal Boulder lifting

Coal Boulders

Development of Solutions

Dry Blasting	High CostDry Ice Shortages	Rejected
Water Jet Cutting Technology	 High Cost of equipment Slow cutting Speed 	Rejected
Hydraulic Breaker	 Hydraulic systems require intensive and periodic maintenance System frequently require parts with a very high degree of precision 	Rejected
Pneumatic Hammer	• O&M Cost for compressor High Noise (@115 dB)	Rejected
Concreate cutter saw	 High Consumable Cost for chain (Rs 35000 for 10 hr. operation) High petrol consumption (200ml for 10 minutes operation) 	Rejected
Electric demolition hammer	 Provide more power for breaking the coal boulder Less time required to break any size coal boulder (02 min only) 	Accepted
Modified Hammer	 No Electric power required. Long life & no maintenance cost 	Accepted

Project -3 Reduction in Coal Demurrage cost by 25%

Developing solution

Electric Demolition Hammer

Modified Hammer

Project -3 Reduction in Coal Demurrage cost by 25%

Benefits

Conventional Hammer Average time is taken @ 180 min

Electric demolition hammer Average time is taken @ 30 min

Demurrage time Reduction by 150 Min/Rake (83% reduction)

Demurrage cost Reduction by 22,500 Rs /Rake

Problem statement

Persistent overheating of the ECWP motor winding, recorded for 5-6 years, has led to two motor failures. Each failure imposes a 30-day downtime for rewinding and restoration, disrupting the cooling water supply for power plant auxiliaries, necessitating a load reduction and thus posing a possible risk to the daily generation loss of 2 million units by the generator.

Low-cost solutions implemented through internal resources					
Sr No Solution Implementation Details					
1	Baffle plate modification for more air to bottom tubes	Baffle plate modified			
2	Provision of additional 03 no of cooling fan to be provided on each motor cooler to increase air flow at top	03 fan installed on each motor			

Project -4 Cooling System Modification for Winding Temperature Reduction

Solutions Implemented

Cooler Assembly			Provisio	on of Cooling	Fans for ECW C	Cooler
Before Modification	Modification of Plates	Baffle	Before Mo	dification	Provision	of fan
Ô	ECW 1B Bef	ore Modification	––– ECW 1B After Mod	lification		
世 20.0 101.7	103.3	103.9	105.1	106.2	106.3	105.6
100.0 195.0 87.90 190.0	91.2	92.9	92.9	93.8	93.7	93.5

。 因0.0	101.7	103.3	103.9	105.1	106.2	106.3	105.6
100.0 100.0 195.0	87.90	91.2	92.9	92.9	93.8	93.7	93.5
留0.0 335.0 正	10:30	12:30	13:30	14:30	15:30	16:30	17:30
ECW 1B Before Modification	101.7	103.3	103.9	105.1	106.2	106.3	105.6
ECW 1B After Modification	87.90	91.2	92.9	92.9	93.8	93.7	93.5

Project -4 Cooling System Modification for Winding Temperature Reduction

Savings

Sr No	Objective & Target Description	Before Implementation	Objective & Target Value	After Implementation
1	Reduced Equipment Non-Availability	300 Hrs.	<100Hrs.	0 Hrs.
2	Reduced Maintenance Cost	2.7 Lac/Annum	< 0.5 Lac/Annum	0.1 Lac
3	Reduction in No of Defects	14 Nos	<5 Nos	0 Nos
4	Reduction in ECW Winding Temperature	120 Deg C	<105 Deg C	95 Deg

Cost Saving	
Manpower Cost Saving due to reduction in no of defects: Rs 20,000/-	
Material Cost Saving due to reduction in Rewinding cost: Rs 5,00,000/-	
Saving due to Elimination of Generator Partial Loading: Rs 15,00,000/-	
Total Cost Saving till July-2023: Rs 20,20,000/-	

Performance Review

MIS for Performance Monitoring

Environment Management

Environment Performance Monitoring:

Ash Management :

It is the first of its kind of system To counter day - to - day fly ash 2011 installed in India. In classifiers demand variation in availability of mixture of fly ash is separated into ash lifting vehicle fine ash 300 MT Ash Storage Silo Dry Evacuation system Ash Gridding Unit • First unit being used in the any power plant in Asia for improving coarse ash utilization 2005 2014-15 • To grind the coarse ash into finer size of less than 45 µm, thus improved total ash utilization

100% ash utilization since FY 2014

Ash Management :

Ash utilisation is incompliance with MoEF & CC Notification

The thermal power plant shall achieve average ash utilization of 100 per cent in a three years cycle. In any year utilization shall not be less than 80%.

Ash Management : Vegetation on Abandon Ash Pond

Vegetation / Plantation is completed on the abandoned Ash Ponds no 1 & 2 on legacy ash. This has been done as per MoEF CC Fly Ash notification Dec-2021 and its amendment as on Dec-2022.

Ash Management : NABL Accreditation for Ash Testing Laboratory

Certificate Number

Validity

National Accreditation Board for **Testing and Calibration Laboratories**

SCOPE OF ACCREDITATION

DTPS COAL TESTING LABORATORY, ADANI ELECTRICITY MUMBAI LIMITED, 4TH FLOOR, Laboratory Name : Acceptitation Standard ISO/IEC 17025-2017

TC-6307

SERVICE BUILDING, DAHANU THERMAL POWER STATION, DAHANU, MAHARASHTRA, INDIA 1 of 1 Page No. 15/11/2021 to 14/11/2023 31/08/2022 Last Amended on

5.54	Discipline / Group	Materials or Products tested	Component, parameter or characteristic tested / ispecific Test Performed / Tests or type of tests performed	Text Nothed Specification against which betts are performed and / or the techniques / equipment cool
-		Permatent Facility	4	
1	CHEMICAL- BUILDING MRTERIAL	Py tet	Finances by the Saving	15 1327
i	CHEMICAL- BUILDING HEATERING	Fyad	Los araphar	15 1727
2	CHEMICAL-SOLID FUELS	Cast	AND AND	15 1330 (Part I)
4	CHEMICAL-SOLID FAILLS	Case	Failed Carbes	(\$1350 (Part I)
5	CHEMICAL-SOLID Publis	Cia	Grout Calestific Value	15 1310 (Part 1)
£ .:	CHEMICAL-SOLID FUELS	Cas	Molitture III. Nor Drilled Surrypter	15 1350 (Part I)
2	CHEMICAL-SOLID FUELS	Call	Suppur	15 1350 (Part III)
U 31	CHEMICAL-SOLID FORE	Cas	Social Maintly/P	15 1310 (Part I)
1 C	CHEMICAL- SOLID FISES	Cas	Volatia Nation	15.1250 (Part I)

AEML Sustainability KPIs & Status

AEML adopted Sustainability Linked Targets with following KPI's with financial penalty for non-achievement

KPI 1: Increase Renewable power mix in the overall power purchase		FY2019 <u>(Baseline)</u>	FY20	22	FY2023	F	Y2024 - Q1
SPT 1: To Attain at least 30% by FY2	2023 and 60% of renewable	3.01%	8.12	%	30.04%		38.43%
power procurement mix by FY2027				R To	E – 3002.41 MU tal – 9995.52 M	U RI U Tot	E – 1147 MU al – 2986 MU
		FY2019 (Baseline)	FY2020	FY2021	FY2022	FY2023	FY2024 – Q1 (Provisional)
KPI 2: Reduction in GHG Emission							
Intensity (Scope 1 and 2) • SPT 2: To Reduce GHG Emission	GHG tCO2e	3750069	3370013	3202020	3237826	3310159	845255
Intensity (Scope 1 and 2) by 40% by FY2025, 50% by FY 2027 and	EBITDA Rs Cr	1664	1882	2078	2083	2381	521 (Provisional)
60% by FY2029, compared with FY2019 (Baseline year)	Emission Intensity (tCO2e/ EBITDA in Rs Cr)	2254	1791	1541	1554	1390	1622
	Reduction		20.55%	31.63%	31.04%	38.32%	28.03%
	ESG Commitments on	track through var	ious Meas	ures Taken			

ADTPS GHG Emission

tCO2/Mwh

- Successfully completed and published AEML GHG Emissions & Renewable Energy Mix Assurance statement.
- Showcase our progress against committed sustainability KPI's.

PAT Cycle

Parameters	UOM	PAT-1	PAT-2
Target SNHR	Kcal/Kwh	2523	2519.42
Achieved SNHR	Kcal/Kwh	2511.71	2495.4
SNHR Gain	Kcal/Kwh	11.29	24.02

Successful completion of PAT-1 & PAT -2 Cycle with gain of 4591 and 8749 Escerts

Renewable Energy

Solar Roof Top Generation	Solar Generation
Admin building roof top solar - MWH	68.88
Vangaon AAQM Roof top - MWH	1.037
Ashagad AAQM Roof top - MWH	1.437
Total	71.36

Best Practices

Safety Initiatives – Video Analytics

INDIA'S POWER UTILITY Electricity

Functionalities of Video Analytics

- Identify & capture the PPE related deviations through AI based application software
- ✤ Alerts immediately send to Monitoring PCs in Safety dept & PCR
- SMS / WhatsApp alert is be given to safety In-charge
- Auto Announcement is done in that area

Digitalization

Modular Concept to Reduce Maintenance Downtime

- Use of modular concept that allows the replacement of major assemblies in a minimum amount of time and expenditure (e.g. HP turbine module, CW debris filter, Primary & Secondary fans rotor, Boiler feed pump cartridge, vacuum pump, CW pump)
- Modular Scaffolding for Boiler Overhauling

Business Environment ADTPS Operates & complies all applicable laws

Compliance through Legatrix Software

✤ All internal compliance also ensured through Legatrix

- 1st Plant in the world
- Energy aspects identification
- Operating limits & defined controls
- Realtime monitoring ELAN system
- Building Energy Consumption Reduction by 25%
- Energy Audits by Accredited Energy Auditors
- BEE Certified Energy Auditors 19 Nos

Celebration of Energy Conservation Week

EC Oath & Tree Plantation by Children

Alter Money Easted is Money entred. Rever Sasted is Power Generated.

Archita Vikas Sable

Drawing & Quiz Competition for Colony Children

Celebration of Energy Conservation Week

Energy Conservation Awareness Program for School / Colleges

Biodiversity Study by CII

- This is the three-season study carried out for biodiversity. Study was carried out from Sep 2021 to Aug 2022
- ADTPS recorded rich faunal and floral diversity and a score of 66/100 awarded
- 225 floral species and 144 faunal species recorded in ADTPS
- 25 migratory birds including flamingoes observed

© LIJOSMEDIA

HIGH DENSITY PLANTATION -Miyawaki Plantation Technique

ISO 46001 CERTIFICATION

WATER-EFFICIENCY MANAGEMENT SYSTEMS

- Mapping of all usage of Water
- Defined limits & controls
- ✤ Metering
- FY Target Reduction of 10% from Baseline

SuP free Installation - Initiative

Certified Since 2021

• SuP Items are banned

14.7

- Identified 18 SuP items eliminated
- Balance will be eliminated by March'23
- Awareness sessions are conducted for employees, vendors,

adani

Electricity

contract workers & colony residents

SuP free Installation - Initiative

- Recarpting of bitumen road by use of Plastic
 & Polythene
- Ban on Plastic & Polythene since 2013
- Use of Biodegradable bags for saplings
- Vendors & contractors are also encouraged to follow SuP norms

Zero Waste To Landfill Certified Since 2021

- Monitoring & segregation of waste generated
- Repair, Reuse & Recycle
- Diversion Ratio -99.96%
- Waste Disposal through
 Authorized Re-users

- ✤ Ash Utilisation more than 100% since 2014
- Condition based oil replacement
- ✤ Recycling of Oil
- Composting of Canteen, Domestic & Horticulture Waste and use as manure
- Use of reusable insulation pads for turbine

AWARDS & RECOGNITION

Recipient of More Than 140 National & International Prestigious Awards Awards

ADTPS has received "Excellent Energy Efficient Unit" award in "22nd National Award for Excellence in Energy Management 2021" from CII

ADTPS also declared as "National Energy Leader" for achieving Excellent Energy Efficient Unit Award consecutively for 3 years

ADTPS Received 1st Prize in Best Boiler User-2022 (Consecutive 2nd Year) by GOM Labour Department

Ramkrishna Bajaj Award for Business Excellence – 2009
 Ramkrishna Bajaj Performance Excellence Award - 2008 & 2019
 Vasundhara Purskar by MPCB – 2012 & 2018

 Rajiv Gandhi National Environmental Award 2008-09
 National Awards for Meritorious Performance in Power sector in 2005, 2006-07, 2009-10 & 2010-11 by MOP
 International Asia Pacific Quality Award 2010 cycle

We're listening

